822 research outputs found

    Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations

    Get PDF
    Isotropic Gaussian random fields on the sphere are characterized by Karhunen-Lo\`{e}ve expansions with respect to the spherical harmonic functions and the angular power spectrum. The smoothness of the covariance is connected to the decay of the angular power spectrum and the relation to sample H\"{o}lder continuity and sample differentiability of the random fields is discussed. Rates of convergence of their finitely truncated Karhunen-Lo\`{e}ve expansions in terms of the covariance spectrum are established, and algorithmic aspects of fast sample generation via fast Fourier transforms on the sphere are indicated. The relevance of the results on sample regularity for isotropic Gaussian random fields and the corresponding lognormal random fields on the sphere for several models from environmental sciences is indicated. Finally, the stochastic heat equation on the sphere driven by additive, isotropic Wiener noise is considered, and strong convergence rates for spectral discretizations based on the spherical harmonic functions are proven.Comment: Published at http://dx.doi.org/10.1214/14-AAP1067 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

    Full text link
    We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted p\ell_p-spaces for 0<p10<p\leq 1. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the L2L_2, resp. LL_\infty convergence rates afforded by best ss-term approximations of the parametric solution up to logarithmic factors.Comment: revised version, 27 page

    Compressive Space-Time Galerkin Discretizations of Parabolic Partial Differential Equations

    Get PDF
    We study linear parabolic initial-value problems in a space-time variational formulation based on fractional calculus. This formulation uses "time derivatives of order one half" on the bi-infinite time axis. We show that for linear, parabolic initial-boundary value problems on (0,)(0,\infty), the corresponding bilinear form admits an inf-sup condition with sparse tensor product trial and test function spaces. We deduce optimality of compressive, space-time Galerkin discretizations, where stability of Galerkin approximations is implied by the well-posedness of the parabolic operator equation. The variational setting adopted here admits more general Riesz bases than previous work; in particular, no stability in negative order Sobolev spaces on the spatial or temporal domains is required of the Riesz bases accommodated by the present formulation. The trial and test spaces are based on Sobolev spaces of equal order 1/21/2 with respect to the temporal variable. Sparse tensor products of multi-level decompositions of the spatial and temporal spaces in Galerkin discretizations lead to large, non-symmetric linear systems of equations. We prove that their condition numbers are uniformly bounded with respect to the discretization level. In terms of the total number of degrees of freedom, the convergence orders equal, up to logarithmic terms, those of best NN-term approximations of solutions of the corresponding elliptic problems.Comment: 26 page

    Adaptive Galerkin approximation algorithms for partial differential equations in infinite dimensions

    Get PDF
    Space-time variational formulations of infinite-dimensional Fokker-Planck (FP) and Ornstein-Uhlenbeck (OU) equations for functions on a separable Hilbert space HH are developed. The well-posedness of these equations in the Hilbert space L2(H,μ)L^{2}(H,\mu) of functions on HH, which are square-integrable with respect to a Gaussian measure μ\mu on HH, is proved. Specifically, for the infinite-dimensional FP equation, adaptive space-time Galerkin discretizations, based on a tensorized Riesz basis, built from biorthogonal piecewise polynomial wavelet bases in time and the Hermite polynomial chaos in the Wiener-Itô decomposition of L2(H,μ)L^{2}(H,\mu), are introduced and are shown to converge quasioptimally with respect to the nonlinear, best NN-term approximation benchmark. As a consequence, the proposed adaptive Galerkin solution algorithms perform quasioptimally with respect to the best NN-term approximation in the finite-dimensional case, in particular. All constants in our error and complexity bounds are shown to be independent of the number of "active" coordinates identified by the proposed adaptive Galerkin approximation algorithms

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Discontinuous hp-Finite Element Methods for Advection-Diffusion Problems

    Get PDF
    We consider the hp-version of the discontinuous Galerkin finite element method for second-order partial differential equations with nonnegative characteristic form. This class of equations includes second--order elliptic and parabolic equations, first-order hyperbolic equations, as well as problems of mixed hyperbolic-elliptic-parabolic type. Our main concern is the error analysis of the method in the absence of streamline-diffusion stabilization. In the hyperbolic case, an hp-optimal error bound is derived. In the self-adjoint elliptic case, an error bound that is h-optimal and p-suboptimal by half a power of p is obtained. These estimates are then combined to deduce an error bound in the general case. For element-wise analytic solutions the method exhibits exponential rates of convergence under p-refinement. The theoretical results are illustrated by numerical experiments

    Existence of Global Weak Solutions for Some Polymeric Flow Models

    Get PDF
    We study the existence of global-in-time weak solutions to a coupled microscopic-macroscopic bead-spring model which arises from the kinetic theory of diluted solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier-Stokes equations in a bounded domain for the velocity and the pressure of the fluid, with an extra-stress tensor as right-hand side in the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function which satisfies a Fokker-Planck type degenerate parabolic equation. Upon appropriate smoothing of the convective velocity field in the Fokker-Planck equation, and in some circumstances, of the extra-stress tensor, we establish the existence of global-in-time weak solutions to this regularised bead-spring model for a general class of spring-force-potentials including in particular the widely used FENE (Finitely Extensible Nonlinear Elastic) model

    Sparse finite element approximation of high-dimensional transport-dominated diffusion problems

    Get PDF
    Partial differential equations with nonnegative characteristic form arise in numerous mathematical models in science. In problems of this kind, the exponential growth of computational complexity as a function of the dimension d of the problem domain, the so-called ``curse of dimension'', is exacerbated by the fact that the problem may be transport-dominated. We develop the numerical analysis of stabilized sparse tensor-product finite element methods for such high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations, using piecewise polynomials of degree p > 0. Our convergence analysis is based on new high-dimensional approximation results in sparse tensor-product spaces. By tracking the dependence of the various constants on the dimension dd and the polynomial degree p, we show in the case of elliptic transport-dominated diffusion problems that for p > 0 the error constant exhibits exponential decay as d tends to infinity. In the general case when the characteristic form of the partial differential equation is non-negative, under a mild condition relating p to d, the error constant is shown to grow no faster than quadratically in d. In any case, the sparse stabilized finite element method exhibits an optimal rate of convergence with respect to the mesh-size, up to a factor that is polylogarithmic in the mesh-size.\ud \ud Dedicated to Henryk Wozniakowski, on the occasion of his 60th birthday
    corecore